Moth olfactory receptor neurons adjust their encoding efficiency to temporal statistics of pheromone fluctuations

Publication
PLoS Comput. Biol.

Summary

Sensory neural systems of living organisms encode the representation of their environment with remarkable efficiency. We study the dynamic coding of naturalistic olfactory stimulation by pheromone-specific antennal neurons. The analysis reveals that the representation is optimal from several complementary information-theoretic perspectives. (1) Pheromone encounters are best detected if the concentration follows the naturally intermittent time course. (2) Antennal neurons dynamically adjust to the local stimulus statistics. (3) The coding accuracy profile and the stimulus-timescale distribution are in the relationship predicted by both information theory and statistical estimation theory.