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SUMMARY 

 

Dopamine (DA) is recognized as primary regulator of PRL secretion and the    

angiotensin II (Ang II) has been recognized as one brain inhibitory factor of this secretion.  In 

this work, estrogen-primed or unprimed ovariectomized rats were submitted to the 

microinjection of saline or Ang II after previous microinjection of saline or of DA antagonist 

(haloperidol, sulpiride or SCH) both in the medial preoptic area (MPOA).  The study of these 

interactions showed that: 1) estrogen-induced PRL secretion is mediated by Ang II and by DA 

actions in the MPOA, i.e., very high plasma PRL would be prevented by inhibitory action of 

Ang II, while very low levels would be prevented in part by stimulatory action of DA through 

D2  receptors; 2) the inhibitory action of Ang II depends on estrogen and it is mediated in part 

by inhibitory action of DA through D1 receptors and in other part by inhibition of stimulatory 

action of DA through D2 receptors. 

  

Keywords: prolactin, medial preoptic area, angiotensin II, dopaminergic antagonists, 

estrogen   



 3 

INTRODUCTION 

The control of prolactin (PRL) secretion depends on the balance between the action 

of releasing (PRF) and inhibiting (PIF) factors. Dopamine (DA) has been recognized as the 

primary regulator of PRL synthesis and release. However, other hypothalamic, systemic and 

local factors act as inhibitors and stimulators (Ben-Jonathan and Hnasko 2001; Freeman et 

al. 2000). These factors include gamma aminobutyric acid (Schally et al. 1977), 

neuropeptide Y (Rettori et al. 1990; Silveira and Franci 1999), atrial natriuretic peptide 

(Franci et al. 1992; Samson et al. 1988), oxytocin (Samson et al. 1986) and angiotensin II 

(Ang II) (Franci et al. 1997; Steele et al. 1981), among other.   

The rostral group of neurons in A14 nucleus, a periventricular structure, is 

responsible by DA innervation of the medial preoptic area (MPOA). This suggests that the 

MPOA as part of the incerto-hypothalamic dopamine system may have involvement in 

neuroendocrine mechanisms [Björhlund et al. 1975; Day et al.1980; Lindvall et al.1984). 

The periventricular preoptic area neurons project heavily to the arcuate nucleus and median 

eminence (Conrad and Pfaff 1975). Studies that used transections techniques showed the 

interaction between preoptic area and medial basal hypothalamus, which contains the PRL- 

regulating tuberoinfundibular dopaminergic (TIDA) neurons (Arai and Yamanouchi 1975; 

Carrer and Taleisnick 1970). Basal plasma PRL was higher in deafferentated rats that 

showed persistent estrus relative to the deafferentated and sham deafferentated rats that 

showed regular cycle. This may indicate that preoptic area neurons participate in the tonic 

hypothalamic inhibition of basal PRL secretion or the deafferantation disinhibited PRL- 

releasing factor pathways (Jakubowski et al. 1988). Preoptic - anterior hypothalamic area 

neurons that facilitate PRL secretion may either stimulate the secretion of some PRF or 

inhibit the secretion of some PIF into the hypophysial portal vasculature (Day et al. 1982). 
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Tissue extracts from this area have been reported exhibit PRF activity in vitro (Krulich et 

al. 1971). 

Hormonal state of an intact female influences the DA activity in the MPOA 

(Matuszewich et al. 2000). Estrogen stimulates the PRL secretion when is implanted into 

the preoptic area (Pan and Gala 1985).  

MPOA shows angiotensin II (Ang II) - stained cell bodies (Lind, et al. 1985), 

angiotensinogen mRNA, immunoreactive angiotensinogen, angiotensin converting enzyme, 

immunoreactive angiotensin II, angiotensin II binding sites (Bunnemann et al. 1993) and 

AT1 receptors (Phillips et al. 1993). Intracerebroventricular microinjection of Ang II 

decreases (Myers and Steele, 1991) while of specific antiserum against Ang II increases 

plasma PRL (Franci et al. 1997) in estrogen-primed ovariectomized rats. 

Intracerebroventricular microinjection of Ang II excites a large proportion of neurons in the 

preoptic - anterior hypothalamic area, increasing the neuronal discharge frequency (Gronan 

and York 1978) and facilitating the release of norepinephrine and DA (Quadri et al. 1991; 

Summers and Phillips 1983). Microinjection of Ang II into the MPOA decreased plasma 

PRL in estrogen-primed ovariectomized rats. This response was blocked by losartan, an AT1 

receptor antagonist (Dornelles and Franci 1998a), but it was not altered by alpha- or beta- 

adrenergic antagonists (Dornelles and Franci 1998b). 

Considering that: 1) Ang II and DA act on PRL secretion; 2) the influence of 

estrogen on Ang II and DA activity in the preoptic area; we aimed to verify in this work, if 

the Ang II action in the MPOA on PRL secretion would be mediated by D1 and / or D2 

receptors as well, if the presence or absence of estrogen would modify this putative 

interaction.  
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MATERIAL AND METHODS 

 Animals 

Adult female Wistar rats weighing 180-200g were kept in a light- and temperature-

controlled environment (lights on from 7:00 to 19:00 h, 22 ± 2º C), with free access to water 

and food.  

 

 Surgery and treatments  

All rats were ovariectomized (OVX), and 14 days later a unilateral stainless-steel 

cannula was implanted into the MPOA at the following coordinates: AP = 2.2; L = ±0.8; V 

= -7.9 using a stereotaxic instrument (Kopf, USA). The guide cannula was fixed to the skull 

with two screws and dental cement (Simplex Dental, Brazil). A mandril was used to prevent 

obstruction of the cannula. Animals were returned to individual cages after surgery carried 

out under sodium thiopental anesthesia (50 mg/kg, i.p.; Abbott Laboratories, USA). An 

antibiotic (veterinary pentabiotic, Wyeth Ayerst, USA; 0.2 ml/rat) was injected 

intramuscularly following the two surgeries. One week after stereotaxic surgery, the animals 

were subcutaneously injected with estradiol benzoate (25 µg/0.5 ml vegetable oil; Schering- 

Kenilworth, USA; BE group) or vehicle oil (0.5 ml, OV group) for 3 days. On day 3, 24 h 

before the experiment, the animals were anesthetized i.p. with 1 ml of tribromoethanol 

(Aldrich Chem., USA) 2.5% in saline /100g b.w. for insertion of the intra-atrial catheter 

(tubing with a 0.020 x 0.037 diameter; Dow Corning, USA) through the jugular vein.  
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Experimental procedures 

On the day of the experiment, between 8:30 to 9:00 a.m., an extension of 

polyethylene tubing (PE 50) filled with heparin solution (1:40) in 0.9% NaCl was attached 

to the distal end of the jugular cannula. After 30 minutes, heparinized blood samples (0.8 

ml) were collected from the external jugular vein at the following intervals: -20 (basal 

bleeding), 0, 10, 20, 30 and 60 minutes, while the animal was freely moving in the cage. 

The volume of all samples was replaced immediately after each bleeding with an equivalent 

volume of saline (0.15 M NaCl). Plasma was separated by centrifugation at 4º C and stored 

at -20º C until the time for PRL measurement. 

 Saline (0.15 M NaCl), Ang II (Sigma, USA), haloperidol (D1 / D2 receptor 

antagonist; RBI, USA), sulpiride (D2 receptor antagonist; RBI) or SCH 23390 (D1 receptor 

antagonist; RBI) solutions were injected in a volume of 1 µl during one minute with a 

Hamilton syringe connected by a polyethylene tubing (PE-10) and injecting needle filled 

with the solution to be injected. The injections into the MPOA were carried out 10 minutes 

(NaCl, haloperidol, sulpiride or SCH) and 20 minutes (NaCl or Ang II) after basal bleeding 

(-20 minutes). The largeness of doses used for microinjections of drugs was based in 

literature references: 100 pmol of Ang II (Dornelles and Franci, 1998a, b), 5 µg of 

haloperidol (Weiss and Ettenberg, 1986), 10 µg of  sulpiride  (Morutto and Phillips, 1997) 

and  10 µg  of  SCH 23390 (Moses et al, 1995). A blood sample was withdrawn 

immediately after the second microinjection (time zero). At the end of the experiment, the 

brains were removed and fixed in 10% formalin for histological analysis to confirm the 

localization of the cannula in the MPOA through frozen sections. Only animals with the 

confirmation of cannula placement in the MPOA (near 90%) were included for hormonal 



 7 

measurement. The tips of the cannulas did reach the bearings of the MPOA in that region 

near median line as shown in schematic map (figure 1) adapted from Paxinos and Watson 

(1997). 

 

Radioimmunoassay (RIA) 

RIA for the measurement of plasma PRL was performed using a kit from the 

National Hormonal and Peptide Program of the National Institute of Diabetes and Digestive 

and Kidney Diseases (NIDDKD, USA). The lower detectable amount of PRL RP3 standard 

was 0.2 ng/ml, the interassay coefficient of variation was 11.7%, and the intra-assay 

coefficient of variation was 5.5%. 

 

Statistical analysis  

The data were analyzed statistically by analysis of variance for repeated measures, 

followed by Tukey's multiple range test, using a computer software (SAS, USA). The level 

of significance was set at P<0.05. Results are expressed as means ± standard error.  

 

 RESULTS 

 The basal plasma PRL at -20 minutes was around 10 ng / ml in the several unprimed 

ovariectomized groups (figure 2) and 40 ng / ml in the several estrogen primed 

ovariectomized groups (figure 3). The difference between unprimed ovariectomized groups 

and estrogen primed ovariectomized groups was significant (p < 0.001) and it indicates the 

known stimulatory action of estrogen on PRL secretion. 

 Microinjection of sulpiride (D2 receptor antagonist) in the MPOA decreased plasma 

PRL in estrogen-primed (F= 22.987 for critical level of 2.353, figure 3.4) and unprimed (F= 
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5.216 for critical level of 2.331, figure 2.4) ovariectomized rats while microinjections of 

saline (figures 3.1 and 2.2), haloperidol (a D1 / D2 receptor antagonist, figures 2.2 and 3.2) 

or SCH (D1 receptor antagonist, figures 2.3 and 3.3) in the MPOA did not change plasma 

PRL. The decrease of plasma PRL was significant at 30 and 60 minutes in estrogen- primed 

(figure 3.4) and at 20, 30 and 60 minutes in unprimed- ovariectomized rats (figure 2.4) that 

received sulpiride microinjection when compared with the control groups that received just 

microinjections of saline. 

The figures 3.1 and 2.1 show that combined microinjections of Ang II with saline in 

the MPOA decreased the plasma PRL, respectively, in estrogen-primed (F= 213.67 for 

critical level of 2.315) and unprimed ovariectomized (F= 5.216 for critical level of 2.331) 

rats.  This diminishing was significant at 10, 20, 30 and 60 minutes in estrogen- primed 

(figure 3.1) and at 60 minutes in unprimed- ovariectomized rats (figure 2.1) that received 

Ang II microinjection when compared with the respective control groups that received just 

microinjections of saline. 

 The combined microinjections of haloperidol (figure 2.2) or SCH (figure 2.3) with 

AngII in the MPOA did not change the plasma PRL in unprimed ovariectomized rats. 

However, plasma PRL decreased in the group that received the combined microinjections 

of sulpiride with Ang II (F= 10.65 for critical level of 2.331, figure 2.4).   This diminishing 

was significant at 10 and 20 minutes in the group submitted to the microinjection of 

sulpiride combined with Ang II when compared with the group submitted to the 

microinjection of NaCl combined with Ang II (figure 2.1)  

The combined microinjections of haloperidol with Ang II (figure 3.2) in the MPOA 

in estrogen primed ovariectomized rats did not change the plasma PRL. However, there 

was change of plasma PRL in the group that received combined microinjections of 
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sulpiride with AngII (F= 97.744 for critical level of 2.315, figure3.4) or SCH with Ang II 

(F= 115.412 for critical level of 2.315, figure 3.3).  Plasma PRL at 20, 30 and 60 minutes in 

the group submitted to the microinjection of sulpiride combined with Ang II (figure 3.4), at 

30 and 60 minutes in the group submitted to the microinjection of SCH combined with Ang 

II (figure 3.3) or at 10, 20, 30 and 60 minutes in the group submitted to the microinjection 

of haloperidol combined with Ang II (figure 3.2) was significantly higher than in the group 

submitted to the microinjection of NaCl combined with Ang II (figure 3.1). 

 

 DISCUSSION 

Our results (Figs. 2.1 and 3.1) are in agreement with a known stimulatory action of 

estrogen on PRL secretion which involves: a) a direct effect on the pituitary to induce 

synthesis, storage and release of PRL (Maurer and Gorski 1977; Vician et al. 1979); b) 

stimulation and inhibition of hypothalamic releasing and inhibiting factors of PRL 

secretion, respectively (Demarest et al. 1984; Pilotte et al. 1984); c) altered sensitivity of 

the pituitary to the regulating factors of PRL secretion (Rayomond, et al. 1978).  

We observed a significant decrease in plasma PRL after microinjection of sulpiride 

(D2 receptor antagonist), but not of SCH (D1 receptor antagonist) or haloperidol (D1 / D2 

receptor antagonist) in the MPOA in estrogen-primed (figure 3) or unprimed (figure 2) 

ovariectomized rats. 

The female hormonal state, the copulatory environment and perineal stimulation 

modulate the activity of DA in the MPOA (Matuszewich et al. 2000). DA content 

(Crowley et al. 1978) and DA turnover (Wuttke et al. 1981) in the MPOA are lower in 

dietrus and proestrus than during estrus and metestrus. On the other hand, estrogen 

significantly reduces the DA turnover in the MPOA in ovariectomized rats (Hiemke et al. 
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1983). It has been suggested that the estrogen can block the DA neurotransmission in the 

MPOA at the pos-synaptic level ((Döcke et al. 1987).  

How could the DA activity in the preoptic area to influence the TIDA neurons that 

control the pituitary PRL secretion? 

PRL release involves two pathways, one originated from midbrain (ascending) and 

other one from prefrontal córtex (descending), both projecting to the lateral and medial 

preoptic area. Then, the common PRL release pathway from the preoptic area to turn, 

caudally until the anterior hypothalamic area (Tindal and Knaggs 1972), which projects 

monosynaptically to the arcuate region (Kawakami 1976). Such a path would be well 

situated to influence the system of DA neurons in the arcuate nucleus and hence to regulate 

the release of DA into the portal vessels. The stimulation of the rostral periventricular area 

might act, therefore by inhibiting transmission in dopaminergic neurons, which in turn, 

inhibit the release of DA from arcuate neurons and permit the release of PRL (Tindal and 

Knaggs 1972). Furthermore, the rostral periventricular region was found to be an effective 

site for stimulating prolactin release in the rat (Kawakami et al. 1973).  

In situ hybridization studies indicate the presence of dopamine D1 and D2 receptors 

into the preoptic-anterior hypothalamic area (Tokyama and Takatsuji 1998). 

 Our results suggest a tonically active stimulation of PRL secretion by DA acting in 

D2 receptors in the MPOA, via an estrogen-independent mechanism since the effect was 

observed in estrogen primed and unprimed ovariectomized rats. However, we can rule not 

out a presynaptic D2 stimulatory autoreceptor regulation of endogenous DA release. In this 

case, the blockage of these receptors could induce an increase in DA endogenous that 

could act exclusively at post-synaptic D1 receptors to inhibit the PRL release. The effect of 

haloperidol could be explained by its ability to block the presynaptic D2 stimulatory 
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autoreceptors as well the pos-synaptic effect through D1 receptors. On the basis of recent 

observations obtained with pharmacological probes more selective for different DA 

receptor subtypes, it was concluded that a simultaneous activation or inhibition of D1 and 

D2 receptors blocks the actions on TIDA neurons mediated by these receptors (Durham et 

al., 1998). Thus, it is possible that simultaneous blockade of D1/D2 receptors by 

haloperidol in the MPOA also has suppressed any action of DA on PRL secretion, while 

the blockade of only D2 receptors by sulpiride did block the tonically stimulated PRL 

secretion. 

Ang II significantly decreased plasma PRL (figure 3.1) in estrogen-primed 

ovariectomized rats (from close to 40 ng / ml at –20 minutes to near 10 ng / ml at 60 

minutes). This lower level was similar to that found in unprimed ovariectomized rats at – 

20 minutes (figure 2.1).  

The endogenous angiotensin system in the preoptic-hypothalamic region does not 

seem to be involved in the maintenance of basal PRL secretion, since centrally 

administered Ang II receptor antagonists or angiotensin convertase inhibitors do not change 

PRL secretion in female or male rats (Dornelles and Franci 1998a; Myers and Steele 1989, 

1991). However, the blockade of the central Ang II system by these compounds greatly 

facilitates stress- or estradiol-induced PRL secretion [Myers and Steele 1989, 1991; 

Saavedra 1992). Microinjection of Ang II into the MPOA decreased plasma PRL in 

estrogen-primed ovariectomized rats. This response was blocked by losartan, an AT1 

receptor antagonist (Dornelles and Franci 1998a), but it was altered not by alpha- or beta-

adrenergic antagonists (Dornelles and Franci 1998b). Our data suggest that Ang II may 

antagonize the stimulatory action of estrogen on PRL secretion and thereby to prevent 

hypersecretion of this hormone. Other investigators have also proposed a possible function 
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of the angiotensin system in the hypothalamus to limit the magnitude of PRL secretion 

(Saavedra 1992; Steele 1992).  

It has been shown the colocalization of receptor mRNA, Ang II binding sites, Ang II 

immunoreactivity nerve terminals and Ang II receptors expression in the preoptic-

hypothalamic area (Lenkei et al, 1997), Ang II binding sites (Gomes et al, 2006) and AT1 

receptors (Moreno and Franci,2005) in the MPOA. There are consistent evidences about the 

regulation of brain Ang II receptors by estrogen and progesterone as well the interaction of 

this regulation with brain areas related with the control of gonadotropin and PRL secretion. 

Arcuate nucleus from cycling rats on the estrus day or estrogen-primed ovariectomized rats 

treated with progesterone presented an increased expression of AT1 receptors (Seltzer et al, 

1993). AT1 receptors as well the expression of their mRNA are induced in the arcuate 

nucleus DA neurons of ovariectomized rats treated with estrogen and progesterone (Johren 

etal, 1997).  Our group showed that Ang II receptors in the locus coeruleus, median preoptic 

nucleus and subfornical organ (Donadio etal, 2005) and ARC (Donadio et al, 2006) are 

upregulated in ovariectomized rats by treatment with estrogen and progesterone.  

Is there interaction between actions of Ang II and DA into the MPOA on PRL 

secretion? The microinjection of sulpiride or Ang II in the MPOA reduced PRL secretion in 

unprimed ovariectomized rats. However, the effect of sulpiride was observed earlier and 

persisted up to 60 minutes (figure 2.4), while the effect of Ang II was observed at 60 

minutes (figure 2.1). Plasma PRL showed a similar profile in the group receiving the 

sulpiride / Ang II combination and the group receiving sulpiride / saline (figure 2.4). Thus, 

the effect of Ang II seems somehow to be masked by sulpiride. On the other hand, SCH 

(figure 2.3) and haloperidol (figure 2.2) blocked the effect of Ang II. Therefore, basal PRL 

secretion can be maintained in part by the stimulatory action of DA through D2 receptors in 
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unprimed ovariectomized rats, while the Ang II inhibitory action seems to depend on the 

action of DA mediated by D1 receptors, since SCH did block the effect of Ang II. 

The inhibitory action of Ang II on PRL secretion in estrogen-primed ovariectomized 

rats was blocked by haloperidol, which acts through D1 and D2 receptors, and was partly 

reduced by sulpiride (D2 receptor antagonist) and SCH (D1 receptor antagonist). Thus, the 

blockade of both receptors did impede the Ang II inhibitory effect, while the blockade of 

either type (D1 or D2) partly did reduced the effect of Ang II. A previous study (Durhan et 

al. 1998) showed that simultaneous activation or inhibition of D1 and D2 receptors did 

block the actions on TIDA neurons mediated by these receptors. 

Since PRL levels close to 40 ng/ml (at -20 minutes) decreased to near 25 ng/ml 

under the effect of sulpiride / saline or of the sulpiride / Ang II combination in estrogen 

primed ovariectomized rats (figure 3.4), it seems that the effect of sulpiride masks the effect 

of Ang II also in this case, as it was observed for unprimed ovariectomized rats.  

Electrical stimulation of the MPOA decreased the magnitude of PRL surges in 

cycling rats during proestrous and estrous afternoon, in lactanting rats during sucling as 

well in pregnant rats during day and night. These inhibitory mechanisms may be in the 

MPOA itself or another region whose projections continue through the MPOA 9Wierma 

and Kastelijn, 1990).  On the other hand, basal plasma levels of PRL decreased after 

microinjections of kainic acid in preoptic-anterior hypothalamic area (POA/AHA). The 

authors discovered that kainic acid caused extensive damage of medial region but not 

periventricular region of this area (Day et al, 1982).  Suties of deafferentation of this ame 

area showed that POA neurons integrate some inhibitory tonic mechanism of basal PRL 

secretion (Jakubowisky et al, 1988). 
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The dual participation of neurons in the preoptic area to control PRL secretion is a 

puzzle with some few known pieces. Furthermore, there are not specific studies about 

dopamine receptors in this brain area correlated with PRL secretion control, estrogen levels 

or angiotensin II action in rat. Thus, the present work represents some contribution for the 

restricted literature of this subject. 

Taken together, our results raise some conclusions regarding the integration of 

mechanisms for the control of PRL secretion: I- the estrogen stimulatory action is mediated 

in part by the stimulatory action of DA through D2 receptors and so, the sulpiride should 

reduce part of the estrogen effect on PRL secretion (figure 3); II- the inhibitory action of 

Ang II depends on estrogen and it is mediated in part by the inhibitory action of DA 

through D1 receptors and in other part by inhibition of the stimulatory action of DA through 

D2 receptors and so, the haloperidol should inhibit the effect of Ang II by blockade of both 

receptors; III- plasma PRL induced by estrogen is mediated by Ang II and DA actions in 

the MPOA  of manner that very high levels of plasma PRL should be prevented by the 

inhibitory action of Ang II, while very low levels should be impeded by the stimulatory 

action of DA through D2 receptors. 
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LEGENDS 

Figure 1- The hatched area represents the site of cannulas tips localization for 

microinjections in the preoptic area: ac-anterior commissure; ox- optic chiasm; MPA-

medial preoptic area; MPOL-medial preoptic area, lateral part; Pe- periventricular nucleus; 

AVPe- anteroventral periventricular nucleus. (Adapted from Paxinos and Watson, 1997; 

bregma  -0.26mm / interaural 8.74 mm). 

 

Figure 2- Plasma PRL after following microinjections in the medial preoptic area (MPOA) 

of ovariectomized rats: NaCl +NaCl (Ο) and NaCl+ Ang II (
�

), panel 2.1; haloperidol 

+NaCl (Ο) and haloperidol + Ang II (
�

), panel 2.2; SCH +NaCl (Ο) and SCH + Ang II 

(
�

),panel 2.3; sulperide +NaCl (Ο) and sulperide + Ang II (
�

), panel 2.4; *P<0.05 vs 

NaCl + NaCl; #P<0.05 vs NaCl + Ang II. The number of animals in the groups was 10 to 

14. 

 

Figure 3- Plasma PRL after following microinjections in the medial preoptic area (MPOA) 

of estrogen-primed ovariectomized rats: NaCl +NaCl (Ο) and NaCl+ Ang II (
�

), panel 3.1; 

haloperidol +NaCl (Ο) and haloperidol + Ang II (
�

), panel 3.2; SCH +NaCl (Ο) and SCH 

+ Ang II (
�

), panel 3.3; sulperide +NaCl (Ο) and sulperide + Ang II (
�

), panel 3.4; 

*P<0.05 vs NaCl + NaCl; #P<0.05 vs NaCl + Ang II. The number of animals in the groups 

was 10 to 14. 
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Figura 1 – ms878 
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Figura 2 – ms878 
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Figura 3 – ms878 

 


