Sulfur Dioxide Relaxes Rat Aorta by Endothelium-Dependent and -Independent Mechanisms

Y.-K. WANG1 #, A.-J. REN1 #, X.-Q. YANG1, L.-G. WANG1, W.-F. RONG3, C.-S. TANG4, W.-J. YUAN1, 2, L. LIN1
#These authors contributed equally to this paper.

1Department of Physiology, Second Military Medical University, Shanghai, 2School of Basic Medical Science, Ning-Xia Medical College, Yinchuan, 3Department of Physiology, School of Medicine, Shanghai Jiaotong University, Shanghai, 4Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing, China

Received November 24, 2007
Accepted June 23, 2008
On-line July 25, 2008

Summary
This study aimed to investigate the vasoactivity of sulfur dioxide (SO2), a novel gas identified from vascular tissue, in rat thoracic aorta. The thoracic aorta was isolated, cut into rings, and mounted in organ-bath chambers. After equilibrium, the rings were gradually stretched to a resting tension. Isometric tension was recorded under the treatments with vasoconstrictors, SO2 derivatives, and various drugs as pharmacological interventions.

In endothelium-intact aortic rings constricted by 1 μM phenylephrine (PE), SO2 derivatives (0.5 – 8 mM) caused a dose-dependent relaxation. Endothelium removal and a NOS inhibitor L-NAME reduced the relaxation to low doses of SO2 derivatives, but not that to relatively high doses (≥ 2 mM). In endothelium-denuded rings, SO2 derivatives attenuated vasoconstriction induced by high K+ (60 mM) or CaCl2 (0.01-10 mM). The relaxation to SO2 derivatives in PE-constricted rings without endothelium was significantly inhibited by blockers of ATP-sensitive K+ (KATP) and Ca2+-activated K+ (KCa) channels, but not by those of voltage-dependent K+ channels, Na+-K+-ATPase or Na+-Ca2+ exchanger. SO2 relaxed vessel tone via endothelium-dependent mechanisms associated with NOS activation, and via endothelium-independent mechanisms dependent on the inhibition of voltage-gated Ca2+ channels, and the opening of KATP and KCa channels.

Key words
Sulfur dioxide • Vasorelaxation • Ion channel • Endothelium • Aorta • Rat

Introduction
The vascular endothelium has been established as an abundant source of vasoactive substances including gases, such as nitric oxide (NO), carbon oxide (CO) and sulfureted hydrogen (H2S) (Bhatia 2005). Sulfur dioxide (SO2) is a novel gas first detected in porcine coronary artery by Balazy et al. (2003). A possible precursor of SO2 could be the intracellular thiol such as cysteine that can be oxidized to cysteinesulfinic acid by cysteine dioxygenase. Cysteinesulfinate can further be transformed by glutamate-oxaloacetate transaminase to generate β-sulfinylpyruvate, which decomposes spontaneously to pyruvate and SO2 (Griffith 1983). Another pathway that can produce SO2 is the oxidation of H2S by NADPH oxidase (Mitsuhashi et al. 2005).

Little is known about the vasoactivity of SO2. A few studies addressed the systemic impact of SO2 inhalation under the concern that SO2 is a common air pollutant. Meng et al. (2003) reported that both SO2 inhalation and intraperitoneal injection of SO2...
derivatives decreased blood pressure in rats, implying possible vasorelaxant activity of SO$_2$. Besides, ACh was shown to stimulate the formation of SO$_2$ (Balazy et al. 2003), raising a possibility that SO$_2$ is involved in the profound vasodilation response to ACh. However, the direct vasoactivity of SO$_2$ has never been described.

SO$_2$ is quite soluble in water. Upon solution, it hydrates rapidly to form sulfurous acid, which dissociates in turn to form sulfite and bisulfite ions (3:1 M/M, in neutral fluid) (Shapiro 1977). The present study observed that SO$_2$ derivatives, a mixture of sulfite and bisulfite (Na$_2$SO$_3$/NaHSO$_3$) in a molar ratio of 3:1, elicited potent vasorelaxation in isolated rat aortic rings constricted by phenylephrine (PE) through both endothelium-dependent and -independent mechanisms. The endothelium-dependent relaxation induced by SO$_2$ was revealed by denuding the endothelium and applying a NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME), and the endothelium-independent mechanism was further investigated by using a variety of ion channel interventions such as antagonist of K$^+$ channels, voltage-gated Ca$^{2+}$ channels, Na$^+$-K$^+$ pump and Na$^+$-Ca$^{2+}$ exchange in endothelium-denuded aortic rings.

Materials and Methods

Preparation of rat aortic rings

This study was performed in accordance with the Guide for Care and Use of Laboratory Animals published by the U.S. National Academy Press in 1996 and the Guidelines for Animal Experiments of the Second Military Medical University, China.

Male Sprague-Dawley rats (250-350 g) were anesthetized by intraperitoneal injection of 1 g/kg urethane with 750 U heparin. The thoracic aorta was quickly removed, cleaned of all connective and fat tissue, and cut into rings of 3 mm in length. The aortic rings were then mounted in organ-bath chambers containing modified Krebs-Henseleit (K-H) solution (pH 7.4) at 37 °C, continuously bubbled with 95 % O$_2$ – 5 % CO$_2$. The modified K-H solution contained (in mM): NaCl 118, KCl 4.6, MgSO$_4$ 1.2, KH$_2$PO$_4$ 1.2, glucose 11.1, NaHCO$_3$ 27.2, EGTA 0.03, CaCl$_2$ 1.8. After 30-min equilibrium, the rings were gradually stretched to a resting tension of 2 g over 40 min. Isometric tension was recorded with force displacement transducers coupled to a computerized recording system (Nanjing MedEase Science and Technology Co. LTD, Nanjing, China).

Protocols

After two challenges with 60 mM KCl, aortic rings were constricted by 1 µM phenylephrine (PE) and subsequently challenged with 1 µM acetylcholine (ACh) to confirm the integrity or removal of the endothelium. Then they were washed in K-H solution to restore tension to baseline level and allowed to stabilize for 60-90 min. The rings were constricted submaximally by 1 µM phenylephrine (PE) again, and SO$_2$ derivatives (Na$_2$SO$_3$ and NaHSO$_3$, 3:1 M/M) were added cumulatively into the bathing solution once steady contraction was obtained. The equivalent SO$_2$ concentration ranged from 0.5 to 8 mM. We have examined the pH of the Krebs solution that it is about 7.40 under normal conditions. After we add SO$_2$ derivatives at the lower concentrations (0.5–2 mM), the pH does not change. It will decrease to 7.37 after SO$_2$ derivatives added at the higher concentrations (4–8 mM) and can return to 7.40 in 3–4 min. Relaxation was calculated as a percentage of the maximal tension induced by PE (Engler et al. 2000).

The role of endothelium/nitric oxide (NO) in vasorelaxant responses to SO$_2$ derivatives was first examined. For this set of experiments, the endothelium was removed mechanically by gently rubbing the luminal surface of aortic rings with a wire, and the functional removal was confirmed by the lack of relaxation in response to ACh as aforementioned. To examine the involvement of NO, endothelium-intact rings were exposed for 30 min to a non-specific NOS inhibitor L-NAME (NG-nitro-L-arginine methyl ester, 100 µM) before the addition of PE.

To study the participation of K$^+$ channels in endothelium-independent relaxation induced by SO$_2$ derivatives, aortic rings without endothelium were constricted with high K$^+$ (60 mM, to abolish the effect of K$^+$ channel activation) (Sang et al. 2003), and SO$_2$ derivatives were applied cumulatively. To further identify the types of K$^+$ channels associated with SO$_2$, a K$_{ATP}$ blocker glibenclamide (3 µM), a K$_{Ca}$ blocker tetraethylammonium chloride (TEA, 5 mM) or a K$_V$ blocker 4-aminopyridine (4-AP, 100 µM) were applied to endothelium-denuded rings 30 min prior to the addition of PE. Only one concentration-response curve to SO$_2$ derivatives was obtained per ring in the presence of each inhibitor.

The ability of SO$_2$ to modulate Ca$^{2+}$ influx via VGCCs was studied using CaCl$_2$-constricted rings without endothelium, as described previously (Chan et al. 2005). For this set of experiments, two consecutive
concentration-dependent constrictions to CaCl$_2$ were obtained in the absence and in the presence of SO$_2$ derivatives (0.5-8 mM, 5-min incubation). For constructing CaCl$_2$ concentration-response curve, arterial rings were rinsed three times in Ca$^{2+}$-free solution containing 30 mM Na$_2$-EGTA and then incubated in Ca$^{2+}$-free, 60 mM K+ solution before the cumulative addition of CaCl$_2$ (0.01-10 mM). The effect of 1 µm nifedipine was tested as control.

In the final set of experiments, the rings were constricted with 1 µM PE and relaxed with cumulative SO$_2$ derivatives (0.5-8 mM). Na+-K+-ATPase inhibitor ouabain (100 mM) or Na+-Ca$^{2+}$ exchanger inhibitor nickel chloride (30 µM) was applied 30 min prior to the addition of PE. ouabain (100 mM) or Na+-Ca$^{2+}$ exchanger inhibitor nickel chloride (30 µM) was applied 30 min prior to the addition of PE.

Drugs

All the drugs were purchased from Sigma-Aldrich (St Louis, MO, USA). They were dissolved in K-H solution except for glibenclamide, which was dissolved in dimethyl sulfoxide first and diluted with K-H solution before use. The final content of dimethyl sulfoxide was 0.2 % (v/v), which did not affect vessel tension.

Statistical analyses

All data are presented as means ± S.E.M. SO$_2$-induced relaxation is expressed as the percentage change from the PE-contracted levels of tension. One-way repeated-measures ANOVA was used for comparisons of concentration-response curves. One-way ANOVA was used for comparisons at each drug concentration. $P<$0.05 value was considered significant.

Results

SO$_2$ derivatives relaxed aortic rings by endothelium-dependent and -independent mechanisms

The thoracic aortic rings were equilibrated for 60-90 min at the optimal preload of 2 g, and then cumulative concentrations of SO$_2$ derivatives (0.5, 1, 2, 4, 8 mM) were administered. No relaxation or constriction was observed (data not shown).

The vasoconstriction induced by 1 µM PE was progressively relaxed by cumulative SO$_2$ derivatives (0.5-8 mM) in both endothelium-intact and -denuded rings. Figure 1A shows representative recordings. Lower concentrations of SO$_2$ derivatives (0.5 and 1 mM) caused less relaxation in endothelium-denuded rings than that in endothelium-intact rings ($P<$0.01, Fig. 1B). However, relatively higher concentrations of SO$_2$ derivatives (2, 4 and 8 mM) relaxed the rings with and without endothelium to the same extent (Fig. 1B). These data suggest that both endothelium-dependent and -independent relaxations are induced by SO$_2$ derivatives at lower doses, while the endothelium-independent relaxation is predominantly displayed at higher doses.

In agreement with the phenomenon, a non-selective NOS inhibitor L-NAME (100 µM) abolished the relaxation of endothelium-intact rings induced by lower doses of SO$_2$ derivatives (0.5 and 1 mM), but failed to affect that by higher doses (Fig. 1). It is suggested that NOS pathway is involved in the endothelium-dependent relaxation induced by SO$_2$ derivatives.

Fig. 1. Relaxation to SO$_2$ derivatives (0.5-8 mM) in rat thoracic aortic rings pre-constricted by 1 µM phenylephrine (PE). (A) Representative traces of vessel tension in response to PE and cumulative SO$_2$ derivatives; (B) Relaxation curves in (○) endothelium-intact rings (n = 18), (●) endothelium-denuded rings (n = 18), and (△) endothelium-intact rings treated with 100 µM of a non-specific NOS inhibitor L-NAME (n = 8). Results are mean ± S.E.M. *$P<$0.01 vs. endothelium-intact rings.
derivatives suggests that the opening of K+ channels (Sang et al. 2003) or 60 mM K+ (high K+, n = 8). (B) Relaxation curves in rings pre-constricted by 1 μM phenylephrine (PE, ○) or 60 mM K+ (high K+, ●). Results are mean ± S.E.M.* P<0.01 vs. PE.

Fig. 2. Relaxation to SO2 derivatives (0.5-8 mM) in endothelium-denuded aortic rings preconstricted by 1 μM phenylephrine (PE, n = 18) or 60 mM K+ (high K+, n = 8). (A) Representative traces of vessel tension; (B) Relaxation curves in rings pre-constricted by 1 μM phenylephrine (PE, ○) or 60 mM K+ (high K+, ●). Results are mean ± S.E.M. * P<0.01 vs. PE.

Ion channels involved in endothelium-independent relaxation induced by SO2 derivatives

Involvement of K+ channels

In endothelium-denuded aortic rings constricted with 1 μM PE, SO2 derivatives caused a dose-dependent relaxation with the maximum of 87.99±1.82 % at 8 mM (Fig. 2A). In the rings constricted with high K+ (60 mM), however, the relaxation to SO2 derivatives was significantly inhibited (maximum 63.88±3.78 %, P<0.01, Fig. 2B), though the contraction induced by high K+ was comparable to that by PE (data not shown). On the one hand, the lessened vasorelaxant activity of SO2 derivatives suggests that the opening of K+ channels contributes to the relaxation, since high K+ is presumed to block all K+ channels (Sang et al. 2003). On the other hand, the persistent existence of vasorelaxation in response to SO2 derivatives under high-K+ conditions suggests that K+ channel-independent mechanisms also contribute to the relaxation.

To further identify the types of K+ channels involved in SO2-induced relaxation, aortic rings without endothelium were treated with glibenclamide (3 μM), TEA (5 mM) and 4-AP (100 μM) to block KATP, KCa and KV, respectively. The vasoconstriction induced by PE remained unchanged by the presence of glibenclamide, TEA or 4-AP. As shown in Figure 3, glibenclamide significantly reduced the relaxation caused by 4 mM and 2 mM SO2 derivatives from 71.06±2.42 to 30.54±4.05 % (P<0.01), and from 51.77±2.77 to 14.44±4.63 % (P<0.01), respectively. Similarly, TEA significantly reduced the relaxation resulting from 4 mM and 2 mM SO2 derivatives to 40.36±4.22 % (P<0.01) and 11.97±4.14 % (P<0.01), respectively. Besides, the relaxant response to 8 mM SO2 derivatives was also significantly reduced by TEA (68.62±4.27 % vs. 87.99±1.82 %, P<0.01). However, 4-AP did not affect the relaxation (n = 12, P>0.05 vs. control). These data indicate that SO2-induced relaxation is associated with the opening of KATP and KCa channels in smooth muscle cells, but not KV channels.

Involvement of voltage-gated Ca2+ channels

In Ca2+-free, 60 mM K+ solution, cumulative CaCl2 (0.01-10 mM) induced progressive constriction of aortic rings without endothelium. The maximal tension was approximately 2.5 g. SO2 derivatives (0.5-8 mM) reduced CaCl2-induced constriction in a dose-dependent manner with progressive suppression of the maximal constriction (n ≥ 6 for each group, Fig. 4). In control
experiments, 1 µM nifedipine abolished vasoconstriction to CaCl₂ (data not shown).

No involvement of Na\(^+\)-K\(^+\) pump and Na\(^+\)-Ca\(^{2+}\) exchanger

Increased activity of Na\(^+\)-K\(^+\) pump results in a reduction in [Na\(^+\)]\(_i\), which may stimulate the forward mode of Na\(^+\)-Ca\(^{2+}\) exchanger and facilitate muscle relaxation. To test whether SO\(_2\)-induced vasodilation is associated with the stimulation of Na\(^+\)-K\(^+\) pump or forward Na\(^+\)-Ca\(^{2+}\) exchanger, the present study used a Na\(^+\)-K\(^+\)-ATPase inhibitor ouabain (100 mM) and a putative Na\(^+\)-Ca\(^{2+}\) exchanger inhibitor Ni\(^{2+}\) (30 µM). Neither ouabain nor Ni\(^{2+}\) affected the vasodilation resulting from SO\(_2\) derivatives in PE-constricted aortic rings without endothelium (Fig. 5). It is suggested that Na\(^+\)-K\(^+\) pump and Na\(^+\)-Ca\(^{2+}\) exchanger are not involved in the vasorelaxant response to SO\(_2\) derivatives.

Discussion

The vasoactivity of SO\(_2\) has never been described before, although it was found in vascular tissue (Balazy et al. 2003). The present study first revealed the direct vasorelaxant activity of SO\(_2\). In constricted rat aortic rings under isometric recording, we found that the derivatives of SO\(_2\) hydration, sulfite and hydrogen sulfite (Shapiro 1977), reduced vessel tension in a dose-dependent manner. The vasorelaxation resulting from low doses of SO\(_2\) derivatives (0.5 and 1 mM) was attenuated by endothelium removal and a non-specific NOS inhibitor L-NAME (Fig. 1), indicating the involvement of endothelium-dependent mechanisms associated with NO. In contrast, the relaxation induced by high doses of SO\(_2\) derivatives (2-8 mM) was not changed by endothelium removal or NOS inhibition (Fig. 1), suggesting that the endothelium-independent relaxation was predominant in the presence of a relatively large amount of SO\(_2\). Previous report showed that the endothelium-independent relaxation by SO\(_2\) derivates was not mediated by NO (Meng and Zhang 2007). It is not in agreement with our results and need further research.

We further studied the ion channels involved in the potent endothelium-independent vasodilation induced by SO\(_2\) derivatives, using pharmacological interventions. It is well known that K\(^+\) plays a vital role in regulating muscle contractility and vascular tone (Nelson et al. 1995). A rise in K\(^+\) permeability normally hyperpolarizes cell membrane and thus inhibits Ca\(^{2+}\) influx through VGCCs, resulting in muscle relaxation. To test whether or not SO\(_2\) can increase K\(^+\) permeability, we observed the relaxant response to SO\(_2\) derivatives in endothelium-denuded rings challenged with high K\(^+\) (60 mM), a putative blocker for all K\(^+\) channels (Sang et al. 2003). The vessel tone caused by high K\(^+\) (60 mM) was comparable to that by PE (1 µM). However, the relaxant response to SO\(_2\) derivatives was smaller in rings receiving K\(^+\) than those receiving PE, suggesting that SO\(_2\) derivatives activated K\(^+\) channels. Balazy et al. (2003) proposed SO\(_2\) as a candidate for the unidentified endothelium-derived hyperpolarizing factor (EDHF), based on the facts that of SO\(_2\) has a short-life comparable to EDHF and the formation of SO\(_2\) can be stimulated by
ACh (Balazy et al. 2003). Here we demonstrate that SO$_2$ derivatives relax vascular smooth muscle at least partially through opening K$^+$ channels, a well-characterized property of EDHF, supporting SO$_2$ as a candidate for EDHF.

Previous report also studied the mechanisms of the endothelium-independent vasodilation induced by SO$_2$ derivatives and the vasorelaxation was mediated in partly by the inhibition of Ca$^{2+}$ channels and the signal transduction pathway of PGI$_2$-AC-cAMP-PKA (Meng and Zhang 2007, Meng et al. 2007). In the present study, we further investigated the mechanisms of vasodilation induced by SO$_2$ by using a variety of ion channel interventions such as antagonist of K$^+$ channels, Na$^+$-K$^+$ pump and Na$^+$-Ca$^{2+}$ exchange besides voltage-gated Ca$^{2+}$ channels. Multiple types of K$^+$ channels have been identified in vascular smooth muscle cells, among which K$_{ATP}$, K$_{Ca}$ and K$_V$ are relatively predominant (Ferrer et al. 1999). To examine their involvement in SO$_2$-induced relaxation, glibenclamide, TEA and 4-AP were administered in concentrations tested previously (Boalotina et al. 1994, Kitagawa et al. 1994, Kitazono et al. 1995, Murphy et al. 1995, Randall et al. 1991) to block K$_{ATP}$, K$_{Ca}$ and K$_V$, respectively. The relaxation of PE-constricted rings in response to SO$_2$ derivatives was significantly reduced by glibenclamide and TEA, but not by 4-AP. These findings suggest the involvement of K$_{ATP}$ and K$_{Ca}$ channels in the vasodilating effect of SO$_2$. It is understood that K$_{ATP}$ channels play a crucial role under the condition of ischemia and reperfusion, where they are activated to hyperpolarize the membrane and therefore to attenuate injuries. The ability of SO$_2$ to activate K$_{ATP}$ channels indicates a potential protective role of SO$_2$ in ischemia-reperfusion.

SO$_2$ derivatives inhibited high K$^+$-induced vasoconstriction (Fig. 2A), indicating that SO$_2$ may act as a Ca$^{2+}$ channel inhibitor to cause vascular relaxation. In endothelium-denuded aortic rings, SO$_2$ derivatives (0.5-8 mM) reduced CaCl$_2$-induced constriction in a dose-dependent manner, suggesting that SO$_2$ derivatives inhibit Ca$^{2+}$ influx through VGCCs in smooth muscle cells. In contrast, the whole cell patch-clamp technique revealed an increased voltage-gated L-type Ca$^{2+}$ current under the treatment with SO$_2$ derivatives in isolated rat ventricular myocytes (Nie et al. 2006). It is indicated that SO$_2$ derivatives may exert different modulations on VGCCs in different cell types.

Sarcoplasmal Na$^+$.Ca$^{2+}$ exchange plays a significant role in regulating [Ca$^{2+}$], in smooth muscle cells and thus vessel tone (Motley et al. 1993). The activity of the Na$^+$.Ca$^{2+}$ exchanger is coupled to [Na$^+$], which is primarily regulated by membrane permeability to Na$^+$ ions and Na$^+$.K$^+$.ATPase activity. Decreased permeability to Na$^+$ or increased activity of Na$^+$.K$^+$ pump results in a reduction in [Na$^+$], which in turn stimulates the forward mode of Na$^+$.Ca$^{2+}$ exchanger and facilitates vasodilation. Treatment with a Na$^+$.K$^+$.ATPase inhibitor ouabain or a Na$^+$.Ca$^{2+}$ exchanger inhibitor Ni$^{2+}$ failed to prevent SO$_2$-induced relaxation. This phenomenon suggests that the relaxation by SO$_2$ is unlikely associated with the stimulation of Na$^-$.K$^+$.ATPase or forward Na$^-$.Ca$^{2+}$ exchanger.

Altogether, the present study showed that SO$_2$ derivatives dose-dependently dilated rat aortic rings via mechanisms that were both endothelium-dependent and independent. NOS activation contributed to the endothelium-dependent relaxation, and the endothelium-independent relaxation was associated with the activation of K$_{ATP}$ and K$_{Ca}$, and the inactivation of VGCCs. In addition, K$_V$, Na$^+$.K$^+$.ATPase and Na$^+$.Ca$^{2+}$ exchanger were not suggested to be involved in the vasorelaxant response to SO$_2$ derivatives.

Conflict of Interest
There is no conflict of interest.

Acknowledgements
This study was supported by grants from the National Basic Research Program of China (No. 2006CB503807) and the National Natural Science Foundation of China (No. 30572190, No. 30600763 and No. 30670760).

References

